SOALKIMIA
Soal Kimia adalah Rangkaian Warna Warni yang mengungkapkan tentang suatu hal yang berhubungan dengan Kimia, Kehidupan,Seni dan Alam Raya.
BACA DAN DOWNLOAD BUKU
Rabu, 20 Maret 2013
Kamis, 13 September 2012
Penjualan Lagu atau Musik vs Pulsa
Sekarang bulan September 2012. Saat ini sedang banjir lagu dan gerakan penyanyi dalam bentuk file-file komputer. Ada file: mp3, mp4, wav, swf dan sebagainya. File mp3 banyak ditemukan pada lagu-lagu, dimana pada file ini gambar penyanyi tidak bisa ditayangkan. file mp4 bisa menampilkan suara dan gambar sekaligus.
Suatu file bisa di copy, bisa diedit, bisa di pajang di internet, bisa dikirim ketempat yang jauh. Misal produser membuat file lagu di Jakarta, dengan segera file ini bisa pindah ke kota lain. Dan dengan segera file ini bisa dilihat di seluruh dunia.
Pulsa elektronik mempunyai sifat unik. Nominal, kode, area digunakan, area beli pulsa,waktu pembelian masa kadaluwarsa selalu bisa tercatat. Catatan tersebut dapat berupa file-file komputer. Sebagai file komputer, catatan ini bisa tersebar dengan cepat kemanapun. Penjualan juga bisa terjadi dimana-mana. Pembeli juga ada dimana-mana.
Dugaan.
Dengan fakta seperti diatas saya menduga pola penjualan musik atau pola penjualan lagu bisa seperti pola penjualan pulsa elektronik.
Senin, 10 Oktober 2011
Mencari energi positip bangsa.
Energi positip adalah kekuatan yang membuat bangsa positip. Energi ini dapat berupa sesuatu yang dapat dilihat dan diraba,dapat juga suatu yang tidak dapat dilihat dan diraba.
Semangat tinggi untuk bekerja yang mengakibatkan bangsa ini makmur adalah energi positip. Kata makmur berarti positip sebagai lawan dari kata misikin, miskin adalah negatif dari makmur.
Aliran listrik yang stabil adalah energi positip. Aliran Timoristrik stabil mengakibatkan proses produksi lancar. Kata lancar berarti positip sebagai lawan dari kata terhambat.
Bangsa yang positip lebih baik dari bangsa yang negatif.Bangsa positip menuju kemakmuran, menuju produktivitas tinggi, bangsa negatif menuju kemiskinan, bangsa negatif menunjukkan kemalasan atau produktivitas rendah.
Bagaimana menjadikan energi negatif menjadi energi positif. Sebagai berikut satu contoh:
Lepasnya Timor- Timor adalah energi negatif...
Bagaimana mengubahnya menjadi energi positif???
Pikirlah bahwa Inggris pernah kelepasan India.Pikirlah bahwa Inggris tetap jaya sampai abad ini.
Pikirlah bahwa Jerman pernah kelepasan Perancis. Pikirlah bahwa Jerman tetap besar sampai saat ini.
Pikirlah bahwa Bahwa Jepang pernah kelepasan Korea. Pikirlah bahwa Jepang tetap maju sampai saat ini.
Pikirlah bahwa Amerika pernah krisis perang saudara, pikirlah Amerika Serikat sekarang masih ada.
Pikirlah Belanda. Betapa sakitnnya mereka meninggalkan Indonesia.Tetapi Belanda tetap ada sekarang.
Ini bisa disimpulkan lepasnya Timtim tidak memburukkan bangsa.
Rabu, 07 September 2011
Menghilangkan bayangan ketakutan para penduduk tidak beruntung Indonesia.
Penduduk tidak beruntung Indonesia ialah setiap orang yang memiliki KTP tetapi bukan PNS atau setiap orang yang memiliki KTP tetapi tidak merupakan karyawan perusahaan mapan atau usahawan yang memiliki KTP tetapi usahanya belum mempunyai keuntungan yang mencukupi kebutuhan hidupnya.
Bayangan ketakutan adalah khayalan tentang ketakutan yang diakibatkan sesuatu yang menimpa diri.Menakutkan karena jika menimpa diri dan keluarga akan menyita waktu, tenaga dan biaya. Waktu, tenaga dan biaya yang seharusnya dialokasikan kepada hal-hal yang menambah-nambah kekayaan kehidupan berubah alokasi kepada mempertahankan kehidupan.Mempertahankan kehidupan perlu, sama perlunya mempertahankan percepatan penambahan kekayaan hidup.
Mempertahankan kehidupan berhubungan dengan kemanusiaan. Dimana manusia harus memelihara kelangsungan hidupnya dan hidup orang lain.Mempertahankan percepatan penambahan kekayaan hidup penting juga karena untuk mengimbangai kebutuhan hidup yang juga mempunyai percepatan.
Hal yang menakutkan itu adalah jika penduduk tidak beruntung jatuh sakit. Bayangkan dia harus membagi waktu dan tenaga, antara tenaga dan waktu untuk mencari nafkah dengan tenaga dan waktu untuk merawat orang sakit. Dia harus membagi dana antara dana untuk modal usaha dengan dana untuk berobat.Dia harus membagi dana antara dana untuk biaya hidupnya dengan dana untuk biaya berobat.
Siapakah yang sanggup menghilangkan ketakutan ini kecuali kebersamaan. Kebersamaan sebesar keluarga kadang tidak juga mampu menuntaskan ketakutan yang besar. Kebersamaan sebesar perusahaan asuransi mungkinkah bisa. Kebersamaan sebesar negara mungkinkah bisa. Saya harap bisa.
Selasa, 16 Agustus 2011
Rabu, 16 Februari 2011
Rocket Fuel In Drinking Water Gets Regulated
Perchlorate, a main component in making explosives, fireworks, air bags and rocket fuel, is contaminating our water and food supply due to improper disposal at rocket-testing sites, military bases and chemical plants. Known to cause development delays and low IQ levels when exposed to young children, the U.S. Environmental Protection Agency (EPA) found “unsafe levels” to be in the drinking water of 17 million people. Independent researchers estimate the number to be closer to the 20-40 million range. In a 2006 study, the FDA found the toxin hiding in over half of the food samples they analyzed, including fruits, vegetables and infant formulas.
This month, the EPA announced its plan to begin immediately forming regulation standards for the chemical over the next two years. This comes after many years of heavy opposition to regulation from the Pentagon and Defense Department, whose military bases and rocket test sites are the causes of the contamination. Cleanup of such sites would cost them millions of dollars. The Perchlorate Information Bureau, an industry-supported group, has argued that there is “no research” to support health claims regarding perchlorate.
These groups “have distorted the science to such an extent that they can justify not regulating [the chemical]. Infants and children will continue to be damaged, and that damage is significant,” said Robert Zoeller, a professor at the University of Massachusetts who specializes in thyroid hormone and brain development.
The EPA’s regulation will implement new clean-water technologies to treat perchlorate-contaminated groundwater, pioneered by the award-winning engineering firm Solutions-IES.
“(C)lean and safe water is not a luxury or a privilege, it is a right of all Americans,” said EPA Administrator Lisa Jackson in statements to U.S. lawmakers. California legislators, the state with the most affected water supplies, celebrated the victory. “I will do everything I can to make sure this new protection moves forward,” said Senator Barbara Boxer.
Sources: EPA; Natural Resources Defense Council on www.emagazine.com/daily-news
This month, the EPA announced its plan to begin immediately forming regulation standards for the chemical over the next two years. This comes after many years of heavy opposition to regulation from the Pentagon and Defense Department, whose military bases and rocket test sites are the causes of the contamination. Cleanup of such sites would cost them millions of dollars. The Perchlorate Information Bureau, an industry-supported group, has argued that there is “no research” to support health claims regarding perchlorate.
These groups “have distorted the science to such an extent that they can justify not regulating [the chemical]. Infants and children will continue to be damaged, and that damage is significant,” said Robert Zoeller, a professor at the University of Massachusetts who specializes in thyroid hormone and brain development.
The EPA’s regulation will implement new clean-water technologies to treat perchlorate-contaminated groundwater, pioneered by the award-winning engineering firm Solutions-IES.
“(C)lean and safe water is not a luxury or a privilege, it is a right of all Americans,” said EPA Administrator Lisa Jackson in statements to U.S. lawmakers. California legislators, the state with the most affected water supplies, celebrated the victory. “I will do everything I can to make sure this new protection moves forward,” said Senator Barbara Boxer.
Sources: EPA; Natural Resources Defense Council on www.emagazine.com/daily-news
Senin, 14 Februari 2011
Carbon Nanotube-Based Integrated Circuits Manufactured on Plastic Substrates
Successful Operation of Carbon Nanotube-Based Integrated Circuits Manufactured on Plastic Substrates
ScienceDaily (Feb. 9, 2011) — As part of NEDO's Industrial Technology Research Grant Japan-Finland collaborative project, Professors Yutaka Ohno from Nagoya University in Japan and Esko I. Kauppinen from Aalto University in Finland along with their colleagues have developed a simple and fast process to manufacture high-quality carbon nanotube-based thin film transistors (TFT) on a plastic substrate.
They used this technology to manufacture the world's first sequential logic circuits using carbon nanotubes. The technology could lead to the development of high-speed, roll-to-roll manufacturing processes to manufacture low-cost flexible devices such as electronic paper in the future.
The results were published on Feb. 6, 2011 in the online edition of the journal Nature Nanotechnology.
Background
Lightweight and flexible devices such as mobile phones and electronic paper are gaining attention for their roles in achieving a smarter ubiquitous information society. For flexible electronics, as a substitute for conventional solid silicon substrates, there is a demand for integrated circuits to be manufactured on a plastic substrate with high speed and low cost .
Thus far, flexible thin-film transistors (TFT) have been produced using a variety of semiconductor materials such as silicon and zinc-oxide, which require vacuum deposition, high-temperature curing, and complex transfer processes. In recent years, organic semiconductors have been rapidly developing, however such semiconductors still have low-mobility and there are problems with their chemical stability. Recently, carbon nanotube thin films have been attracting attention due to their chemical stability and high-mobility. However, although simple solution processes have been developed to produce TFTs, such TFTs have not been yet fulfilled capability expectations thus far, due to the deterioration of the conduction properties of carbon nanotube thin films through the dispersion process in the solution.
Results
(1) Easy and fast thin film deposition: Gas phase filtration and transfer processes
In conventional solution processes, soot-like carbon nanotube material is first dispersed in liquid via sonication to purify the materials and to separate the tubes from each other. In such processes, it is difficult to form homogeneous carbon nanotube films. In addition, technology has not yet been developed to completely remove the dispersant. In contrast, using our innovative technology, we continuously grow nanotubes in an atmospheric pressure chemical-vapor deposition process. The nanotubes are then collected on the filter and subsequently transferred onto a polymer substrate using simple gas-phase filtration and transfer processes to achieve clean, uniform carbon nanotube films. It takes only a few seconds to deposit the carbon nanotubes. This process may be adaptable to high-speed roll-to-roll manufacturing systems in the near future.
(2) Carbon nanotube TFTs with high-mobility of 35 cm2/Vs and an on/off ratio of 6´106
In conventional solution-based carbon nanotube TFT manufacturing processes, nanotubes are dispersed using powerful ultrasound which cuts the nanotubes and reduces their length. Due to high contact resistance between these short nanotubes and the residual impurities caused by the dispersion process, the resulting TFT mobility was approximately 1 cm2/Vs. Due to the doping effect caused by residual impurities from the dispersion, the on/off ratio was only between about 104~105. When carbon nanotube thin films are manufactured using the above gas-phase filtration and transfer processes, the tubes in the film are as clean and long as those that are grown in the synthesis processes. Accordingly, TFTs with a high mobility of 35 cm2/Vs were achieved. In addition, due to precision control of the nanotube density, an on/off ratio of 6x106 was simultaneously achieved. The TFT performance we have achieved is significantly higher than the performance of organic semiconductor TFTs and carbon nanotube TFTs reported so far, and equal to the performance of low-temperature polycrystalline silicon as well as zinc oxide TFTs, which are manufactured using high-temperature processes and vacuum-based processes.
(3) Successful operation of integrated circuits on transparent and flexible plastic substrates
The gas-phase filtration and transfer processes can be applied to manufacture devices on any substrate material. This time, we integrated the high-performance carbon nanotube TFTs on plastic substrates, and achieved successful operations of ring oscillators and flip-flops. High-speed operations have been achieved with a delay time of 12 microseconds per logic gate. The flip-flops that have been manufactured through these processes are the world's first carbon nanotube-based synchronous sequential logic circuits.
Taken from: http://www.sciencedaily.com/releases/2011/02/110208091557.htm
ScienceDaily (Feb. 9, 2011) — As part of NEDO's Industrial Technology Research Grant Japan-Finland collaborative project, Professors Yutaka Ohno from Nagoya University in Japan and Esko I. Kauppinen from Aalto University in Finland along with their colleagues have developed a simple and fast process to manufacture high-quality carbon nanotube-based thin film transistors (TFT) on a plastic substrate.
They used this technology to manufacture the world's first sequential logic circuits using carbon nanotubes. The technology could lead to the development of high-speed, roll-to-roll manufacturing processes to manufacture low-cost flexible devices such as electronic paper in the future.
The results were published on Feb. 6, 2011 in the online edition of the journal Nature Nanotechnology.
Background
Lightweight and flexible devices such as mobile phones and electronic paper are gaining attention for their roles in achieving a smarter ubiquitous information society. For flexible electronics, as a substitute for conventional solid silicon substrates, there is a demand for integrated circuits to be manufactured on a plastic substrate with high speed and low cost .
Thus far, flexible thin-film transistors (TFT) have been produced using a variety of semiconductor materials such as silicon and zinc-oxide, which require vacuum deposition, high-temperature curing, and complex transfer processes. In recent years, organic semiconductors have been rapidly developing, however such semiconductors still have low-mobility and there are problems with their chemical stability. Recently, carbon nanotube thin films have been attracting attention due to their chemical stability and high-mobility. However, although simple solution processes have been developed to produce TFTs, such TFTs have not been yet fulfilled capability expectations thus far, due to the deterioration of the conduction properties of carbon nanotube thin films through the dispersion process in the solution.
Results
(1) Easy and fast thin film deposition: Gas phase filtration and transfer processes
In conventional solution processes, soot-like carbon nanotube material is first dispersed in liquid via sonication to purify the materials and to separate the tubes from each other. In such processes, it is difficult to form homogeneous carbon nanotube films. In addition, technology has not yet been developed to completely remove the dispersant. In contrast, using our innovative technology, we continuously grow nanotubes in an atmospheric pressure chemical-vapor deposition process. The nanotubes are then collected on the filter and subsequently transferred onto a polymer substrate using simple gas-phase filtration and transfer processes to achieve clean, uniform carbon nanotube films. It takes only a few seconds to deposit the carbon nanotubes. This process may be adaptable to high-speed roll-to-roll manufacturing systems in the near future.
(2) Carbon nanotube TFTs with high-mobility of 35 cm2/Vs and an on/off ratio of 6´106
In conventional solution-based carbon nanotube TFT manufacturing processes, nanotubes are dispersed using powerful ultrasound which cuts the nanotubes and reduces their length. Due to high contact resistance between these short nanotubes and the residual impurities caused by the dispersion process, the resulting TFT mobility was approximately 1 cm2/Vs. Due to the doping effect caused by residual impurities from the dispersion, the on/off ratio was only between about 104~105. When carbon nanotube thin films are manufactured using the above gas-phase filtration and transfer processes, the tubes in the film are as clean and long as those that are grown in the synthesis processes. Accordingly, TFTs with a high mobility of 35 cm2/Vs were achieved. In addition, due to precision control of the nanotube density, an on/off ratio of 6x106 was simultaneously achieved. The TFT performance we have achieved is significantly higher than the performance of organic semiconductor TFTs and carbon nanotube TFTs reported so far, and equal to the performance of low-temperature polycrystalline silicon as well as zinc oxide TFTs, which are manufactured using high-temperature processes and vacuum-based processes.
(3) Successful operation of integrated circuits on transparent and flexible plastic substrates
The gas-phase filtration and transfer processes can be applied to manufacture devices on any substrate material. This time, we integrated the high-performance carbon nanotube TFTs on plastic substrates, and achieved successful operations of ring oscillators and flip-flops. High-speed operations have been achieved with a delay time of 12 microseconds per logic gate. The flip-flops that have been manufactured through these processes are the world's first carbon nanotube-based synchronous sequential logic circuits.
Taken from: http://www.sciencedaily.com/releases/2011/02/110208091557.htm
Langganan:
Postingan (Atom)